# Emergent Dark Matter, Baryon and Lepton Numbers

### Yanou Cui

Harvard University & University of Maryland

with Lisa Randall and Brian Shuve (arXiv:1106.4834 [hep-ph], JHEP08(2011)73)

## **Outline**

- Motivation: DM-B (L) coincidence
- Review of Existing ADM models, Novel alternative: asymmetry transfer via mass mixing
- **Example models** 
  - Two-Higgs Model: Rapid Mixing Shutoff
  - Moduli Driven Transfer—Gradual Mixing Shutoff
  - Mixing induced by cosmic background energy
- **Conclusions**

### **Brief Review of Dark Matter Theories**

### Dark Matter:

- Significant part of universe:  $\Omega_{DM} \approx 23\%$  vs.  $\Omega_{B} \approx 4\%$
- Limited clues for its microscopic features so far ⇒ Appealing candidate Theories for DM: not many Conventional Favorite: WIMP
  - -weak scale mass, weak scale interaction with SM,  $\Omega_{DM}$ from thermal freezeout

## Horizon beyond WIMP...

### WIMP:

- Merits: Good connection with new particle physics at weak scale; natural fit to desired  $\Omega_{DM}$ –WIMP miracle
- Challenge: Not as 'natural' as naively expected
  - Limited parameter space in concrete EWSB models: e.g. SUSY WIMP
  - Combining direct detection bounds with  $\Omega_{DM}$ requirement⇒Limited possibilities left: based on  $\sigma_{DiDt} - \sigma_{ann}$  correlation by crossing Feynmann diagrams ( $\Rightarrow$ higgs-like mediator, dark sector or leptophilic annihilation, on-resonance annihilation...) (general operator analysis Cui. Mason and Randall, 2010)
- ⇒ DM theories beyond standard WIMP, yet with sound motivations?
- A relatively over-looked clue:  $\Omega_{DM} \Omega_{B}$  coincidence two sectors with distinctive constituents, very weak interaction, after long-time evolution, end up with comparable  $\Omega$ ...

## Paths of addressing $\Omega_{DM} - \Omega_B$ coincidence

## Origin of $\Omega_B$ :

- **1** Baryogenesis generates asymmetry  $(n_B n_{\bar{R}})/n_{\gamma} \sim 10^{-10}$
- 2 Annihilation (e.g.  $q\bar{q} \rightarrow \nu\bar{\nu}$ ) is on until late time, depletes symmetric component
  - $\Rightarrow n_B(t \to \infty) = n_B n_{\bar{B}}$ , i.e.  $\Omega_B$  is 'asymmetric'

## $\Omega_{DM} - \Omega_B$ Connection?

Direction-1:  $\Omega_{DM}$  is also 'asymmetric'

Dark matter is also 'asymmetric', with connection to  $\Delta B(L)$ , symmetric component of DM annihilates away later like B

## **Review of Existing ADM Works:**

- Co-generation of dark and B asymmetries
  - Embed in EW baryogenesis via sphalerons: DM is new chiral SU(2), doublet (Kaplan, 1982; Nussinov, 1985...), ruled out by recent direct detection bound...
  - Generalized GUT-baryogenesis or leptogenesis: heavy particle decay to both DM and B (or L) ('Hylogenesis': Davoudiasl et. al 2010, 'Cladogenesis': Allahverdi et. al 2010, 'ADM from Leptogenesis': Falkowski et. al 2011...)
- Asymmetry is generated in one sector first, then transferred to another asymmetry by thermalization via higher-dim transfer operator ('Asymmetric Dark Matter': D. E. Kaplan et. al 2009)...

```
E.g. (SUSY) via \Delta W_{eff} = \frac{1}{M} X^2 L H_u
-in equilibrium \mu_B \sim \mu_X, n_B/n_X \sim n_R^{eq}/n_X^{eq} (T_D) freeze in
when transfer decouples at T_D (\Gamma \lesssim H) – thermal
relation/suppression, most work: m_{DM} \sim O(\text{GeV})(m_X/T_D < 1),
m_{DM} \sim m_{EW} (m_X/T_D > 1)-Randall and Buckley, 2010
```

- $\bullet \Rightarrow \Omega_{DM} \Omega_{B}$  coincidence: an intriguing clue, yet not well explored -mechanisms, mass range (most work in the past two years) ...
- More general possibilities to address the coincidence? Focus of this talk: Mass mixing as asymmetry transfer operator in ADM framework
- Another novel possibility out of ADM frame—combine both WIMP miracle and ADM merits: Wimpy Leptogenesis, work in progress with L.Randall and B.Shuve, See Brian's talk

## **Emergent dark matter, Lepton and baryon** numbers

### Existing ADM models:

- Employ higher dim operator;
- Its origin? ← UV completion requires additional **structure**: messenger sector, new scale...
  - —less economic, less compelling

## More economic alternative: Mass mixing between X and L(B)

- No odd ops, no odd scales: Renormalizable op, or generated by Plack suppressed ops
- Qualitatively different from higher dim op: interplay between neutrino-like oscillation and thermal interaction. new way to accommodate heavier  $m_X$ ...
- Are B(L) and X separately conserved, esp. in the early universe? Maybe not...⇒ *Emergent X, B/L number*

## **ADM Models with Mass Mixing Transfer**

### **Guidelines:**

XL mixing on at early universe to transfer asymmetry, but off today  $\Rightarrow$  Dynamical mechanism:  $\langle \phi \rangle XL$  where  $\phi$  is a scalar field with  $\langle \phi \rangle \neq 0 \rightarrow \langle \phi \rangle = 0$  transition  $\langle \phi \rangle = 0 \rightarrow \langle \phi \rangle \neq 0$ : vanilla phase transition pattern for symmetry breaking The opposite  $\langle \phi \rangle \neq 0 \rightarrow \langle \phi \rangle = 0$  is GENERIC as well:

- Rapid shutoff of  $\langle \phi \rangle$  triggered by interaction with another scalar: inspiration from 'hybrid inflation' (Linde, 1994), 'Two Stage Phase Transition in Two Higgs Models' (Land and Carlson, 1992)
- $\langle \phi \rangle$  gradual rolling to 0: ubiquitous—cosmic background energy density (e.g. KE)  $\propto T^4$ ;  $\phi$  as moduli field with flat potential e.g. pseudo-Goldstone boson, SUSY Polonyi field, SUSY flat direction moduli in Affleck-Dine baryogenesis, string theory moduli...; generic feature: start at large VEV at early time, then slowly roll down to true vacuum  $\langle \phi \rangle = 0$

## Ex-I: Rapid Mixing Shutoff-Two-Higgs Model

- High scale baryogenesis (leptogenesis) generate B and L asymmetries ( $n_L \sim n_B$  via sphalerons)
- ② Consider EW scale two Higgs model:  $SU(2)_L$  doublets  $\sigma, \phi$  where  $\sigma$  is SM Higgs,  $\phi$  is DM-L 'mixer', DM  $X_L, X_R$  are a vector-like Dirac fermion pair. Generic PT pattern in 2-higgs model:  $\phi \neq 0$  during an intermediate period of EW phase transition when L is transferred to X via mass mixing  $\phi XL$ , then  $\phi \to 0$  by rapid tunneling to true vacuum at later time

The model: (New  $Z_2$  symmetry to prevent  $\phi\sigma$  mixing, as well as ensure X stability)

$$\begin{array}{cccc} \mathcal{L} & \supset & m_X X_i \bar{X}_i + y_X \, \Phi X_i L_i + V(H,\Phi) + \mathrm{h.c.}, \\ V(T=0) & = & 4k_1 |H|^4 - 4\mu_1^2 |H|^2 + 4k_2 |\Phi|^4 - 4\mu_2^2 |\Phi|^2 + 4k_3 |\Phi|^2 |H|^2, \end{array}$$

## Two-step phase transition in 2-higgs model: generic, large parameter space

- 1 At  $T > T_{c2} = \frac{\mu_2}{\langle \sigma_2 \rangle}$ ,  $\langle \phi \rangle = \langle \sigma \rangle = 0$
- 2 First PT at  $T_{c2} = \frac{\mu_2}{\sqrt{\alpha_2}}$ : minimum (energy  $V_2$ )  $\langle \phi \rangle \neq 0$ ,  $\langle \sigma \rangle = 0$
- 3 Around  $T_{c1}=\frac{\mu_1}{\sqrt{\alpha_1}}$  a new minimum (energy  $V_1$ ) develops with  $\langle \phi \rangle = 0, \langle \sigma \rangle \neq 0$ ,  $V_1=V_2$  at  $T_d=(\frac{\sqrt{\lambda_2}\mu_1^2-\sqrt{\lambda_1}\mu_2^2}{\sqrt{\lambda_2}\alpha_1-\sqrt{\lambda_1}\alpha_2})^{1/2}$  Second PT (1st order) tunneling occurs at later  $T_t$  when  $\langle \phi \rangle \to 0$  via tunneling—mixing shuts off

## **Asymmetry transfer Period:** $T_{c2} < T < T_t$ Computing the amount of $L \to X$ transfer via $\langle \phi \rangle XL$ —three factors to consider:

- Coherent oscillation induced by mass mixing (like neutrino oscillation):  $\Gamma_{osc} \sim \frac{\Delta m^2}{E}$
- Thermalization via scatterings in equilibrium:  $\Gamma_{therm} \sim \sin^2 \theta \Gamma_0$ , mixing angle  $\theta \sim y \langle \phi \rangle / m_X$ ,  $\Gamma_0 \sim g_{FW}^4 T$
- State projection: at  $T_t$ , mixed basis  $\Rightarrow$  no-mixing (flavor) basis  $(X' = c_\theta X + s_\theta L, L' = -s_\theta X + c_\theta L)$

## **Asymmetry Transfer in 2-Higgs Model-I**

**Simplification:** at  $T \sim T_{EW}$ ,  $\Gamma_{therm}(T_{EW}) \gg H(T_{EW}) \Rightarrow$  rapid thermalization, can apply *equilibrium distribution* in instantaneous mass basis. Final asymmetries from state projection at  $T_t$ :

$$n_{L}^{f} = n_{L}^{eq}(T_{t})c_{\theta}^{2}(T_{t}) + n_{X}^{eq}(T_{t})s_{\theta}^{2}(T_{t}) 
 n_{X}^{f} = -n_{L}^{eq}(T_{t})s_{\theta}^{2}(T_{t}) + n_{X}^{eq}(T_{t})c_{\theta}^{2}(T_{t})$$

Asymmetry ratio:

$$\frac{\Delta_X}{\Delta n_L} = -\frac{(1 + \cos^2 \theta) \Delta n_{\bar{X}'}^{eq} + \sin^2 \theta \Delta n_{L'}^{eq}}{\cos^2 \theta \Delta n_{L'}^{eq} + \sin^2 \theta \Delta n_{\bar{Y}'}^{eq}}$$

### Three cases and numerical results:

- Relativistic X:  $T_t \gg m_X$ ,  $\frac{\Delta_X}{\Delta n_t} \approx -\frac{2}{3}$ ,  $m_X \sim O(\text{GeV})$
- Thermally suppressed X:  $\tan^2 \theta \ll \frac{n_X^{eq}}{n_L^{eq}}, \frac{\Delta_X}{\Delta n_L} \approx -6\sqrt{\frac{2M^3}{\pi^3T^3}} e^{-M/T},$  $m_X \sim 300 - 500 \text{GeV}$  (fix  $m_h = 120 \text{GeV}$ )
- Novel-Mixing-angle-suppressed X:  $\frac{n_L^{xq}}{n_L^{pq}} \ll \tan^2 \theta$ ,  $\frac{\Delta x}{\Delta n_L} = -\tan^2 \theta$ ,  $m_X \sim 400 500 \text{GeV}$

Ex: Viable regions (unshaded) with  $y_X = 1.7$  and  $\mu_2 = 54$  GeV



## Phenomenology

 <u>DM direct detection:</u> loop-suppressed X-nucleon coupling induced by doublet φ:

$$\sigma_{\mathrm{dd}} pprox (4 imes 10^{-46} \mathrm{~cm^2}) \left( rac{Z/A}{0.4} 
ight)^2 \left( rac{500 \mathrm{~GeV}}{m_\phi/y_X} 
ight),$$

similar to arxiv:0909.2035, Cohen and Zurek —can be tested by next generation DM detectors

• <u>LHC search:</u> most promising– pair production of  $\phi^{\pm}$ , then  $\phi^{\pm} \to X(MET) + \ell^{\pm}$  (Related independent, detailed studies of 'flavored DM': Chacko et.al, Batell et.al arXiv:1105.1781 [hep-ph]... and their talks yesterday)

## Ex II: Moduli induced mass mixing

In early universe, various types of moduli fields can take on large VEV due to thermal effect or initial condition, then slowly rolls down to 0: String moduli, SUSY Polonyi field, SUSY flat direction... These  $\phi$  fields are typically gauge singlets $\Rightarrow$ L in  $\phi LX$  needs to be sterile (N) (EW doublet X is ruled out)

- Minimal scenario: N as the sterile Dirac partner of SM L, both N, L asymmetries are generated with equal amount by Dirac leptogenesis at high T (E.g. Murayama and Pierce, 2002) Caveat: moduli decay may dilute X, B(L) densities→ late decay-light moduli, or heavy moduli with efficient leptogenesis (resonance enhanced or Affleck-Dine)
- ② DM a vector-like Dirac pair  $X, \bar{X}, \phi$  is a moduli taking  $\langle \phi \rangle \sim M_{\mathcal{D}}$  at the end of inflation
- ① DM-L mixing, asymmetry transfer via e.g. fermionic DM w/heavy moduli:  $c \frac{|\phi|^2 XN}{M_{\odot}}$

## Dynamics of moduli $\phi$

• Toy model scalar potential:

$$V = (m^2 - a^2 H(t)^2) |\phi|^2 + \frac{1}{2M_0^2} (m^2 + b^2 H^2) |\phi|^4$$

where  $-a^2H(t)^2$  (H(t): Hubble scale) is thermal mass correction from coupling to background density

• Instantaneous VEV: above  $T_c \sim \sqrt{2ma \cdot M_p}$ :

$$\langle \phi \rangle = M_p \sqrt{(a^2 H(t)^2 - m^2)/(b^2 H(t)^2 + m^2)}$$

below  $T_c$ :  $\langle \phi \rangle = 0$ 

• True instantaneous  $\phi$  coupling to XN-solve e.o.m.:

$$\ddot{\phi} + 3H\dot{\phi} + 2(m^2 - a^2H^2)\phi + \frac{2}{M_0^2}(m^2 + b^2H^2)\phi^3 = 0$$

### • Time-variation of Mass Mixing Solution of e.o.m $\tilde{\phi}$ tracks $\langle \phi \rangle$ well when $H(t) \gg m$ , starting $H(t) \sim m$ , slowly approaching true vev: damping oscillation around $\langle \phi \rangle = 0$ , $(\phi_0 \sim 10^{10} \text{GeV})$

$$\tilde{\phi}(t) = \frac{\phi_0}{(mt)^{3/2}} \sin(mt)$$

 $\Rightarrow$  Mass mixing is on yet gradually falling towards 0 after  $H(t) \sim \mu_X$ 

• A rough estimate of transfer rate N → X:

$$\Gamma_{transfer} pprox \sin^2 \theta \sin^2 (rac{\epsilon_+ - \epsilon_-}{\Gamma_0}) \Gamma_0$$

 $\epsilon_+ - \epsilon_-$ : mass splitting between X and N,  $\theta$ : mass mixing angle,  $\Gamma_0$ : thermal interaction rate of X, N within its own sector

• At high T (leptogenesis), could well be  $\Gamma_{transfer} \ll H(t) \Rightarrow$  non-equilibrium process, cannot directly apply  $n^{eq}$  as in EW 2-higgs model

## Computing $N \rightarrow X$ in non-equilibrium

### Solve density matrix evolution equations for $\rho_{XX}(t \to +\infty)$ :

$$i\dot{\rho} = [\mathcal{H}^{(1)}, \rho] - i\{\mathcal{H}^{(2)}, \rho\}$$

 $\mathcal{H}^{(1)}$  (from  $|M(T)|^2$ )—oscillation,  $\mathcal{H}^{(2)}$ —thermal collisions Ex. fermionic (N, X) system:

$$\frac{d}{dt} \left( \begin{array}{c} \rho_{NN} \\ \rho_{XX} \\ \rho_{NX} \\ \rho_{XN} \end{array} \right)$$

$$=\frac{1}{67}\left(\begin{array}{cccc} 0 & 0 & i\mu M_{13} & -i\mu M_{13} \\ 0 & 0 & -i\mu M_{13} & i\mu M_{13} \\ i\mu M_{13} & -i\mu M_{13} & -6\Gamma_0 T + i(\mu^2 - M_{13}^2 - \lambda_{32}^2 T^2) \\ -i\mu M_{13} & i\mu M_{13} & 0 & -6\Gamma_0 T - i(\mu^2 - M_{13}^2 - \lambda_{32}^2 T^2) \end{array}\right)\left(\begin{array}{c} \rho_{NN} \\ \rho_{XX} \\ \rho_{NX} \\ \rho_{NN} \end{array}\right)$$

### **Numerical Results**

### Constraints:

- $T_{lep} \lesssim T_{RH}$  to avoid dilution from inflaton decay
- Efficient depletion of the symmetric component of X: annihilation coupling should be g ~ O(1)
- $y \ll 1$  for the heavy field in leptogenesis to decay out of equilibrium  $(y: y_N, y_L \text{ in } y_N NH_u\psi + y_L L\chi\bar{\psi}).$
- Avoid thermal suppression of  $X, N: m_X, m_N(T = T_{lep}) < T_{lep}$
- Heavy Moduli– decay before BBN:  $m_{\phi} \gtrsim$  50TeV; Light moduli–stable until today,  $\rho_{\phi} < \rho_{B}$ :  $m_{\phi} \lesssim \text{keV}$

### Benchmark points:

Heavy moduli:

$$T_{BH} \sim 10^8 - 10^{10} \text{GeV} : m_{DM} \sim O(\text{GeV}) - 100 \text{TeV}$$

Light stable moduli:

$$T_{RH} \sim 10^9 - 10^{11} {\rm GeV} : {\rm m_{DM}} \sim {\rm O(GeV)} - 100 {\rm TeV}$$

## Ex. III: Mixing induced by background energy

**More generic** mass mixing at early universe: coupling to fields dominating cosmic bkg energy

 $\bullet$  E.g. Scalar X, N (SUSY); coupling to KE of relativistic thermal fermion  $\psi$ 

$$\Delta \mathcal{L} \supset rac{c}{M_{
ho}^2} \left( i \psi^\dagger \gamma^\mu D_\mu \psi 
ight) \left( X N + \mathrm{h.c.} 
ight).$$

with

$$\langle \psi_{\Sigma}^{\dagger} \gamma^{\mu} D_{\mu} \psi_{\Sigma} 
angle = rac{\pi^2}{30} g_* \, \mathcal{T}^4,$$

 Similar analysis as in moduli case (solve density matrix evolution),

Benchmark points:  $T_{RH} \sim 10^{16} \text{GeV}, m_X \sim 1 - 100 \text{TeV}$ 

## **Conclusions**

- Asymmetric Dark Matter: well motivated by  $\Omega_{DM} \Omega_{B}$ coincidence: Most existing work: rely on higher-dim operator for transfer-UV completion? extra structure...
- We consider a novel, economic alternative: mass mixing as transfer operator –renormalizable or  $M_{pl}$  suppressed; DM, baryon/lepton number may not be separately preserved in early universe...
- Example models: two higgs, moduli induced transfer, background energy induced transfer; Numerics work well with natural inputs: accommodate heavier (weak scale) DM mass beyond O(GeV) range.